
Jupyter with OnDemand
Introduction: This workshop will discuss how to use Jupyter Notebooks and Jupyter Labs on ARCC HPC clusters and introduce a
series of best practices.

Course Goals:

• Introduce what Jupyter is and why it’s useful
• Identify the difference between Jupyter Lab and Jupyter Notebooks and when to use one tool over another
• Demonstrate the Jupyter service within OnDemand across a variety of available languages and kernels
• Provide the steps to convert an existing Conda environment into a kernel that can be used within a Jupyter session

Notes:

• The workshop modules work best in a sequential manner as a story introducing concepts and providing examples, but sections
can be used separately to focus on a particular concept.

• You will need to modify usernames, project names, and folder locations, to apply to yourself.

1. Intro to Jupyter
2. Starting Jupyter in OnDemand
3. Dive into Jupyter Notebooks
4. Dive into Jupyter Labs
5. Exporting Conda Environments as a Kernels

file:///wiki/spaces/AIP/pages/2205908993/Jupyter
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2205777958/Running+Jupyter+from+OnDemand
file:///wiki/spaces/AIP/pages/2205974529/Dive+into+Jupyter+Notebooks
file:///wiki/spaces/AIP/pages/2205909027/Dive+into+Jupyter+Labs
file:///wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments

Jupyter
Goals:

• Introduce what Jupyter is and why it’s useful
• Differentiate between Jupyter Notebooks and Jupyter Labs and when to use each
• Identify cell types in a notebook and how they’re used
• Things to be

• What is Jupyter?
• Jupyter Notebooks

o Notebook cell types
• Jupyter Labs

What is Jupyter?
Jupyter, formerly known as an ipython notebook, is a popular tool used in data science and data analysis.

• An open-source, browser-based, web application with a wide variety of functions
o Allows users to create and share computational documents, called notebooks

§ Notebooks facilitate the development of live code that can then be run in a number of different coding
languages.

§ Code can be run step by step in “chunks” called cells.
§ Users can combine live code cells with other cells - Markdown text, images, plots, and other rich media in a

single interactive canvas.
§ Can produce a wide variety of interactive output including HTML, videos, LaTeX, and custom MIME types.
§ Can be shared through e-mail, GitHub, or other cloud storage and sharing services.
§ Easily exported to other formats like, books, slides, web apps, static web pages, or PDF documents.

o Allows users to run code and share ideas and share in a “live” and easily available format.
• Requires a kernel to launch

Jupyter Notebooks

Jupyter Notebooks are just the Notebook application itself

• Simple interface where users can open and run
notebooks

• Straightforward linear flow, where you can create and
run cells in a single notebook

• Beginners may find Notebooks easier to use, initially

Lacks some of the functionality of Jupyter Lab

• Supports extensions, but the process of installing and
managing them more difficult.

• Available extensions is smaller compared to
JupyterLab.

• Does not have a built-in terminal or text editor. Users
need to rely on external tools or extensions for these
tasks.

Notebook cell types
By default, there are 4 types of Notebook cells:

• Markdown
• Code
• NBConvert
• Heading

Jupyter Labs

• Jupyter’s “next generation interface to work with
notebooks, code, and data

• Includes notebooks, but extends to consoles, terminals,
CSV editors, markdown editors, interactive maps, etc.

o Users can easily write their own plugins.
o Workspace consists of a main work area, where

you can open multiple documents and activities,
and a collapsible left sidebar that provides
access to the file browser, running kernels and
terminals, command palette, and notebook cell
tools.

• Has a modular structure, allowing you to open several
notebooks and added files like HTML, Text,
markdown in the same window - more like an IDE.

o The main work area in JupyterLab uses a tab-
based layout, allowing you to switch between
multiple open documents easily.

o Users can drag and drop tabs to rearrange the
layout, split the view to see multiple documents
side-by-side, or even create new windows for a
more customized workspace.

• Lab also allows users to execute code in a python
console

Starting Jupyter from OnDemand
Goals:

• Go through the steps of starting a Jupyter session through the OnDemand web interface

• Click to start
• Fill out the Jupyter Session Request Form
• Your interactive sessions
• Connect to your session

• Next Steps

Click to start

On your local desktop, you launch jupyter through command line, by typing a
command to launch it like:
jupyter notebook

Alternatively, OnDemand interactive applications can be launched from OnDemand
with graphics. This should appear similar to a remote desktop window that only
gives you remote access to the launched application.

After logging into OnDemand on your favorite ARCC HPC resource, you can
request a Jupyter Session by clicking on the app from the main Dashboard:

Fill out the Jupyter Session Request Form
After clicking the jupyter app, you are taken to a web form to tailor and specify the Jupyter environment you’d like to run in your
session

Jupyter Interface: Select from Jupyter Notebook or Jupyter Lab

Account: The associated investment account or project you’re using to run the session

Number of hours: How long you plan to use the notebook

Number of Nodes: how many nodes you want allocated to perform work while using this
notebook.

Number of CPUs: how many cores you will need access to perform your work while using
this notebook.

Amount of Memory: Memory in GB required to run throughout the course of this Jupyer
session

GPU Type: Which GPU hardware you’d like to perform your work in the Jupyter Notebook
or Lab on

Your interactive sessions
• When you click launch, you’re redirected to a

page showing a list of your most recent
interactive sessions.

• The Slurm scheduler assigns a compute node
with a specified number of cores, memory,
hardware and timeframes as requested from the
input you provided in your webform.

• When your session is ready for use, the heading
will turn green.

o Completed sessions are denoted with
gray headings

o Pending sessions are denoted with blue
headings

.

Connect to your session

To open Jupyter, click on the
connect button within the active
session

You will be directed to a Jupyter notebook or lab environment to start using Jupyter!

Dive into Jupyter Notebooks
Goals:

• Walk through a navigating within a Jupyter Notebook session
• Demonstrate options and features available in Jupyter Notebooks

• Initial Screen Navigation and Options
• What are Kernels?
• Open a New Blank Notebook

o New Notebook - New Options
o Menu Bar with Dropdowns
o Toolbar Actions
o Notebook Cell Types

• Where are we?
o How to get to directories outside of $HOME?

• What Packages are Available in our Kernel?
o New Cell in our Notebook
o Load a different kernel
o No available kernels have all the software I need - Now what?

• Next Steps

Initial Screen Navigation and Options
Upon connecting, you are presented the jupyter dashboard which serves as your home page for jupyter notebook. The Jupyter
Notebook screen is rather simple with 3 tabs:

• Files: (Default selected) Interactive view of the portion of the filesystem accessible by the user, rooted by the directory in
which the notebook was launched from.

• Running: Displays currently running notebooks known to the server. (You can manage notebook kernels from here)
• Clusters: Gives a summary of iPython Parallel clusters

(More about this later)

What are Kernels?
A Jupyter kernel is the computational engine behind the code execution in Jupyter notebooks.

Most users think of this as the “compiler” or programming language used when running code cells.
The Kernel empowers you to execute code in different programming languages like Python, R, or Julia or other languages and
instantly view the outcomes within the notebook interface.

After opening a new notebook, you will be prompted to
select a kernel

• If you have never created a kernel to use, you will
only see a list of default Jupyter kernels available on
the cluster

• You may check the box to start with the preferred
kernel every time you open a notebook

Default Kernels on ARCC HPC Resources include:

• Python Kernels
• R Kernels

HPC-wide kernels are titled by packages installed and
available when launched

Users can also create user-defined kernels from conda
environments (Covered in a subsequent module. See:
Launching Jupyter Kernels from Conda Environments)

file:///wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments

Open a New Blank Notebook

From the Right side of the File Management Tab:

New->Notebook-> Select from a list of kernels. Choose Python 3 (ipykernel)

This should open a new browser tab/window with a blank Jupyter notebook named: Untitled.ipynb

If we go back to our previous Jupyter tab/window containing the file browser from which we
launched our notebook, this new file shows up in the list, and has a green icon to it’s left, meaning it
is currently running:

New Notebook - New Options
When a notebook is open a new browser tab is created showing the notebook user interface (UI).
This allows for interactive editing and running of the notebook document.

• Header: Top has the
document name
(editable).

• Menu bar with drop-
downs & loaded kernel

• Toolbar
• Body

Menu Bar with Dropdowns
• Has top-level menus that expose

actions available in Jupyter Notebook:
o File: actions related to files and

folders
o Edit: actions related to editing

notebooks
o View: Options to alter

appearance of Notebook
o Insert: Limited options for cell

insertion
o Kernel: actions for kernel

management
o Help: a list of Jupyter help links

Note: Jupyter extensions can create new top-
level menus in the menu bar.

Right of the menu bar, the current kernel is
listed

https://jupyterlab.readthedocs.io/en/stable/user/extensions.html#user-extensions

Toolbar Actions
- Save and checkpoint notebook

- Add a cell below the current one

- Cut/Delete this cell

- Copy contents of current cell

- Paste in new cell below active cell

- Up 1 cell

- Down 1 cell

- Run current cell

- Stop running cell

- **Reload/Restart Kernel

- **Restart Kernel & Re-run entire
notebook

- Select current cell type

- Display full list of keyboard shortcuts
for Jupyter Notebooks

** - Will restart entire kernel and you will
lose all current output. (Is output easily
regenerable?)

Notebook Cell Types
We can use the cell type option in the toolbar to set cell type in the notebook body:

• Code: Define computational code (language = from kernel) in the document.
o If the kernel is python cell type, the cell will expect input in the form of python code.
o This is our default code type when new cells are created.

• Markdown: Uses Markdown language to build nicely formatted narratives around the code in
the rest of the document. Click here for Markdown Cheat Sheet

• Raw NBconvert: Used when text should be kept in raw form for conversion to another format
(such as HTML or Latex). When you use these, cells marked as Raw are converted in a way
specific to your targeted output format.

• Heading: For making headings. Somewhat redundant - you can also make headings in a
markdown cell.

https://www.markdownguide.org/cheat-sheet/

Code

• Code cells allow you to write and run programming
code in a language of your choosing (e.g., Python)

• Languages supported in Jupyter include Python, R,
Julia, and many others

• On ARCC HPC resources, we support jupyter code in
Python and R

• After running, they can and usually do provide some
form of output

Markdown

• Text Cells allowing you
to write and render
Markdown syntax

• Where you describe and
document your
workflow

Raw NBConvert

• Stands for “Raw Notebook Convert”
• Retains any text in these cells in their raw

form and does not run them
• Enables the conversion of your notebook to

another format as given by the FORMAT
string using Jinja templates.

o Presenting: PDF
o Publishing: LaTeX
o Collaboration
o Sharing: HTML

• Setting to “none” just makes it a “Raw” cell
in which nothing is run on it.

Where are we?
Previously, we said the file
management tab shows the filesystem
accessible to the user, rooted by the
directory from which the notebook was
launched.

In the file management tab we can see
root directory, and within it, the
Desktop, Documents, and Downloads,
and ondemand directories.

We could just assume the file manager
is showing our home directory. But
how would we find out for certain?

Running with a Python kernel, we can use our
jupyter notebook to get this information from
the system:

1. import the python OS module (to let us
interact with the native OS on the
cluster that Jupyter is running on top of)

2. On the next line, type os.getcwd()
(AKA: get current working directory)

3. Click the run button to run our
cell and generate a new output cell,
which also creates a new input cell
below that.

Note: New input cells are code cell types by
default
With the information from our output cell, we
can conclude that OnDemand launches Jupyter
from your $HOME

import os : import a python module allowing us to use python kernel running this
notebook to interact with underlying HPC cluster’s OS

os.getcwd(): a python command to output the full system path in which our active
jupyter notebook resides.

How to get to directories outside of $HOME?
If we select the default Python 3 (ipykernel), we are
presented with the file explorer showing our home
directory as it’s rooted location. This means we can’t
go up any further in system’s directory structure.

• With our local root location for the notebook
set to our $HOME, we are unable to see our
/project and /gscratch directories on the
cluster.

• To expose these folders to the jupyter
environment, create a symbolic link (aka
shortcut) within our /home.

Instructions for creating a symbolic link may be found
here or expanded in the cell to the right

Steps to create a symbolic link

1. Open an ssh connection to the HPC cluster with:
ssh your_username@clustername.arcc.uwyo.edu
or open a shell through OnDemand:

2. In the shell/terminal interface, create a symbolic link to your project
(replacing project_name with the name of your project) with:

[~] ln -s /project/project_name/ project

3. In the shell/terminal interface, create a symbolic link to your gscratch
(replacing username with the your username on the HPC) with:

[~] ln -s /gscratch/username/ gscratch

What Packages are Available in our Kernel?
In our notebook, we can see which modules are available by opening a new cell with the + button.

In our cell box, set as “code” use the python import command, followed by a space, then hit tab to get a list of options.

Hitting tab after import runs autocomplete options for the import command. This list of options has populated all modules available
to us in our jupyter notebook:

https://arccwiki.atlassian.net/wiki/spaces/DOCUMENTAT/pages/1502380046/JupyterLab+and+Notebooks#Connecting-to-your-Project-and-GScratch

New Cell in our Notebook
Since we appear to have a large number of packages available in this environment, we’ll import one we expect to be there.

In our bottom-most cell, add to the import command by typing an import for a common package used in mathematic and multi
dimensional matrix computations - numpy.

Run this command with the run button

Our output results in an error:

• The error means this particular module is not available in the kernel we have loaded, despite being a commonly used
software package for researchers and computations.

• While many packages were listed when we autocompleted an import command, most of them were installed as part of the
jupyter installation and underlying OS environment.

• Most software we’d need to perform even more simple and common activities for our research would still need to be
installed or made available somehow. What are our options?

Load a different kernel

Depending on the HPC’s native environment, you may have other kernels available.

To load a different kernel, we go to the Kernel option in our drop down menu then navigate to “Change kernel”.

• To load a different kernel, we go to the Kernel option in our drop down menu then navigate to “Change kernel”.
• Select a different kernel than the current one, based on your own preference

The new kernel is loaded as shown in the top right of our notebook.

• If we rerun our 2 cells again, what happens this time?

No available kernels have all the software I need - Now what?

To be continued…

Launching Kernels from Conda Environments

Goals:

• Provide logic and reasoning for using Conda environments, versus other available options
• Walk through the process for creating personalized kernels from a Conda environment

• Why make your own kernels?
• Kernels from Conda Environments

file:///wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments#Why-make-your-own-kernels%3F
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments#Kernels-from-Conda-Environments

o Exporting your Conda Environment to a Kernel (Python)
o Exporting your Conda Environment to a Kernel (R)

• Running a Console Kernel
• Next Steps

Why make your own kernels?
Individual researchers on ARCC systems often need access to specific software and modules - specific to their focus of study or
research.

While ARCC provides general “base” kernels, they typically lack all software packages specific to any one researcher’s needs. To solve
this, researchers may perform installs within the jupyter notebook (with !pip for Python or install.packages() for R).

ARCC recommends against this practice because by default this will install the packages within the user’s $HOME creating a new
set of issues in the future.

Issue 1: Storage Quotas

1. $HOME directories on HPC are usually relatively small compared to storage in /project or /gscratch. ARCC provides a
default quotas on HPC for each user’s $HOME, but this can fill up quickly when performing frequent python pip or R
install.package() installations, which leads to exceeding the storage quota in your $HOME directory.

a. While installation locations can be redirected, several other configuration changes should be made to make them
available and work appropriately.

b. It’s far more straightforward to create Conda environments and redirect Conda installations with the -p flag (to specify
installation path).

https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments#Exporting-your-Conda-Environment-to-a-Kernel-(Python)
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments#Exporting-your-Conda-Environment-to-a-Kernel-(R)
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments#Running-a-Console-Kernel
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2206629889/Launching+Kernels+from+Conda+Environments#Next-Steps

Issue 2: Software Conflicts

2. By default, local installs will install to one central location within your home directory (pip under ~/.local,
install.packages() under ~/R)

a. Package installations are separated by kernel software versions, but if conflicts exist within the overall install location,
packages are overwritten to make the software and dependencies “fit” with your most recently requested installation.
This can change installation and available packages for your user profile, breaking older installations and software that
you still want to use.

b. Installing in your $HOME directory makes packages and versions of software in your /home available to you regardless of
whether you want them at the time, or not.

c. This causes software conflicts between versions native to the HPC system, those you may want to load off and on with
modules, and those you’ve installed in $HOME, meaning that loaded modules or native HPC software may not work
properly or crash due to underlying dependencies can be superseded by packages in $HOME.

Kernels from Conda Environments
In the Conda module, we learned that conda allows software environments to be contained, meaning they do not conflict with one
another, and can be loaded and unloaded so that they are exposed to you only when you want them to be.

In OnDemand Jupyter sessions you can launch a Jupyter session utilizing the software packages from a Conda environment you’ve set
up yourself.

• This becomes very useful if you are using a package that requires extensions be installed in the environment that is launching
the Jupyter session.

• To configure your environment so that it launches as you want, you should ensure that the appropriate packages are installed
within the Conda environment.

• In this module, we will go through steps needed to correctly create your environment and configure it as a kernel available to
you within your Jupyter sessions.

https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2135883799

Exporting your Conda Environment to a Kernel (Python)

In these steps, we assume you’ve already created your desired Conda environment. To learn how to create a Conda environment, please
see our Conda module.

With our Conda environment already installed and configured, we can now
set it up to be used as a jupyter kernel. (To learn about how to make your
own Conda environments, see our training on Conda)

1. Open a Command Line Terminal on the HPC resource.
2. Load Miniconda
3. Activate your Conda environment
4. Install your kernel:

conda install ipykernel for python kernels
5. Set your environment to be recognized as an available kernel

python -m ipykernel install --user --name=<kernelname>

For Python:
#open command line interface
module load miniconda3
conda activate
<insert_environment_name_or_path_here>
conda install ipykernel
python -m ipykernel install --user --
name=mypythonkernel

Exporting your Conda Environment to a Kernel (R)

In these steps, we assume you’ve already created your desired Conda environment. To learn how to create a Conda environment, please
see our Conda module.

https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2135883799
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2135883799
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2135883799

With our Conda environment already installed and configured,
we can now set it up to be used as a jupyter kernel. (To learn
about how to make your own Conda environments, see our
training on Conda)

1. Open a Command Line Terminal on the HPC resource.
2. Load Miniconda
3. Activate your Conda environment
4. Install your kernel:

conda install r-irkernel for R kernels
5. Set your environment to be recognized as an available

kernel
a. note R location in conda
b. Load R: R
c. Install kernel: R prompt:

>
IRkernel::installspec(name,displayname)

d. Create specific R version kernel folder in
~/.local/share/jupyter/kernels/

e. Copy config from <conda-env> appending the
following to path after <conda-env> name with
/lib/R/library/IRkernel/kernelspec/* to
kernels folder in your
.local/share/jupyter/kernels/ folder.

For R:
#Step (1) open command line interface:
#Step (2) Load miniconda:
module load miniconda3
#Step (3) :
conda activate <insert_environment_name_or_path_here>
#Step (4):
conda install r-irkernel
#Step (5a):
which R
/project/<project_name>/software/conda/r/rtest/bin/R
#Launch R (step 5b):
R
#Install kernel in R prompt (step 5biii):
> install.packages('IRkernel')
> IRkernel::installspec(name='r4.4.1', displayname='R
4.4.1 Kernel')
> q()
#Step (5c):
#Change directory to jupyter kernel directory:
cd ~/.local/share/jupyter/kernels/
#Step (5d): make a directory for your kernel:
mkdir r4.4.1
#change directory to new directory:
cd r4.4.1
#Step (5e) Copy kernelspec from conda to .local:
cp
/project/<project_name>/software/conda/r/rtest/lib/R/
library/IRkernel/kernelspec/*
~/.local/share/jupyter/kernels/r4.4.1/.

https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2135883799
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2135883799

Running a Console Kernel
Open a new Jupyter Session

Select your new kernel from the dropdown list

Next Steps
Previous

Dive into Jupyter Notebooks

Workshop Home

Jupyter with OnDemand

Use the following link to provide feedback on this training: https://forms.gle/qBBwXpKeTNqSR5516 or use the QR code below.

https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2205974529
https://arccwiki.atlassian.net/wiki/spaces/AIP/pages/2205646897
https://forms.gle/qBBwXpKeTNqSR5516

